login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349739
Number of ordered pairs of commuting elements (partial permutations) in the symmetric inverse semigroup on [n].
1
1, 4, 31, 310, 3925, 58936, 1032979, 20600266, 461742985
OFFSET
0,2
REFERENCES
Stephen Lipscomb, Symmetric Inverse Semigroups, Mathematical Surveys and Monographs, Volume 46, 1996, Chapters 3,4,5.
MATHEMATICA
x[list_] := If[list == {}, 1, Apply[Times, list] Apply[Times, Table[Count[list, i]!, {i, 1, Max[list]}]]]; y[list_] := If[list == {}, 1, Apply[Times, Table[Count[list, i]!, {i, 1, Max[list]}]]];
c[n_, pair_] := n!/(x[pair[[1]]] y[pair[[2]]]); n[k_, list_] := Count[list, k];
m[k_, list_] := Sum[Binomial[n[k, list], j]^2 j! k^j, {j, 0, n[k, list]}];
xp[list_] := Apply[Times, Table[m[k, list], {k, 1, Max[{1, list}]}]];
partialPermMatrices1[n_] := Module[{im = PadRight[IdentityMatrix[n], {n + 1, n}]},
Sort@Map[Extract[im, List /@ #] &]@ Permutations[Join[ConstantArray[n + 1, n], Range@n], {n}]]; s[list_] := Total[Map[Apply[Times, #] &, Map[Min, Map[list[[#]] &, Map[Position[#, 1] &, partialPermMatrices1[Length[list]]], {2}], {2}]]]; Table[(Map[s, Level[Table[Level[Table[Table[{IntegerPartitions[nn - k][[i]], IntegerPartitions[k][[j]]}, {i, 1, PartitionsP[nn - k]}], {j, 1, PartitionsP[k]}], {2}], {k, 0, nn}], {2}][[All, 2]]])*(Map[xp, Level[Table[ Level[Table[Table[{IntegerPartitions[nn - k][[i]], IntegerPartitions[k][[j]]}, {i, 1, PartitionsP[nn - k]}], {j, 1, PartitionsP[k]}], {2}], {k, 0, nn}], {2}][[All, 1]]])*(Map[c[nn, #] &, Level[Table[Level[Table[Table[{IntegerPartitions[nn - k][[i]], IntegerPartitions[k][[j]]}, {i, 1, PartitionsP[nn - k]}], {j, 1, PartitionsP[k]}], {2}], {k, 0, nn}], {2}]]) // Total, {nn, 0, 7}]
CROSSREFS
Cf. A002720, A000712 (number of conjugacy classes).
Sequence in context: A375434 A114475 A243312 * A359621 A076280 A141005
KEYWORD
nonn,more
AUTHOR
Geoffrey Critzer, Dec 19 2021
STATUS
approved