login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array read by rows: T(n,k) = A002884(k)*2^((n-k)(n-k-1)), n >= 0, 0 <= k <= n.
1

%I #27 Jan 07 2024 17:17:22

%S 1,1,1,4,1,6,64,4,6,168,4096,64,24,168,20160,1048576,4096,384,672,

%T 20160,9999360,1073741824,1048576,24576,10752,80640,9999360,

%U 20158709760,4398046511104,1073741824,6291456,688128,1290240,39997440,20158709760,163849992929280

%N Triangular array read by rows: T(n,k) = A002884(k)*2^((n-k)(n-k-1)), n >= 0, 0 <= k <= n.

%C For A,B in the set of n X n matrices over GF(2) let A ~ B iff A^j = B^k for some positive j,k. Then ~ is an equivalence relation. There is exactly one idempotent matrix in each equivalence class. Let E be an idempotent matrix of rank k. Then T(n,k) is the size of the class containing E.

%C The classes in the equivalence relation described above are called the torsion classes corresponding to the idempotent E. - _Geoffrey Critzer_, Oct 02 2022

%H Andrew Howroyd, <a href="/A349545/b349545.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50)

%H Encyclopedia of Mathematics, <a href="http://encyclopediaofmath.org/index.php?title=Periodic_semi-group">Periodic semigroup</a>

%e Triangle begins:

%e 1;

%e 1, 1;

%e 4, 1, 6;

%e 64, 4, 6, 168;

%e 4096, 64, 24, 168, 20160;

%e 1048576, 4096, 384, 672, 20160, 9999360;

%e ...

%e T(3,1)=4 because we have: { I = {{0, 0, 0}, {0, 0, 0}, {0, 0, 1}},

%e A= {{0, 0, 0}, {1, 0, 0}, {0, 0, 1}}, B= {{0, 1, 0}, {0, 0, 0}, {0, 0, 1}},

%e C= {{1, 1, 0}, {1, 1, 0}, {0, 0, 1}} } where I is idempotent of rank 1 and A^2=B^2=C^2=I.

%t q = 2; nn = 7;Table[Table[Product[q^d - q^i, {i, 0, d - 1}] q^((n - d) (n - d - 1)), {d, 0,n}], {n, 0, nn}] // Grid

%o (PARI) \\ here b(n) is A002884(n).

%o b(n) = {prod(i=2, n, 2^i-1)<<binomial(n, 2)}

%o T(n,k) = {b(k)*2^((n-k)*(n-k-1))} \\ _Andrew Howroyd_, Nov 22 2021

%Y Cf. A053763 (column k=0), A002884 (main diagonal).

%K nonn,tabl

%O 0,4

%A _Geoffrey Critzer_, Nov 21 2021