Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Feb 24 2022 09:03:31
%S 1,-3,-9,-18,-81,-189,-729,-2052,-6480,-19197,-59049,-175446,-531441,
%T -1589949,-4781511,-14335704,-43046721,-129097152,-387420489,
%U -1162141182,-3486771279,-10459998909,-31381059609,-94142073420,-282429529920,-847285420797,-2541865710960,-7625587899366,-22876792454961,-68630348286531
%N Dirichlet inverse of A133494, 3^(n-1).
%H Antti Karttunen, <a href="/A349453/b349453.txt">Table of n, a(n) for n = 1..1001</a>
%F a(1) = 1; a(n) = -Sum_{d|n, d < n} A133494(n/d) * a(d).
%F G.f. A(x) satisfies: A(x) = x - Sum_{k>=2} 3^(k-1) * A(x^k). - _Ilya Gutkovskiy_, Feb 23 2022
%t a[1] = 1; a[n_] := a[n] = -DivisorSum[n, a[#] * 3^(n/# - 1) &, # < n &]; Array[a, 30] (* _Amiram Eldar_, Nov 22 2021 *)
%o (PARI)
%o A133494(n) = max(1, 3^(n-1));
%o memoA349453 = Map();
%o A349453(n) = if(1==n,1,my(v); if(mapisdefined(memoA349453,n,&v), v, v = -sumdiv(n,d,if(d<n,A133494(n/d)*A349453(d),0)); mapput(memoA349453,n,v); (v)));
%Y Cf. A133494.
%Y Cf. also A349449, A349450, A349451, A349452, A349568.
%K sign
%O 1,2
%A _Antti Karttunen_, Nov 22 2021