login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Sum_{k>=1} (-1)^k * log(k) / k^4.
1

%I #11 Nov 13 2021 05:55:35

%S 0,3,3,4,7,8,8,0,4,5,7,8,5,6,5,0,6,6,3,8,5,9,5,6,8,5,4,7,8,8,7,3,7,7,

%T 9,9,7,1,3,7,5,9,7,3,0,4,0,5,7,3,4,9,7,4,8,2,8,6,6,5,7,6,4,2,8,8,6,8,

%U 3,6,2,2,5,2,7,9,5,8,8,3,8,1,0,7,9,5,3,4,7,4,7,5,8,6,5,8,6,4,8,6,2,2,8,2,6,6,5,1,1,1,1,2,1,8,5,5,1,7,9,8,3

%N Decimal expansion of Sum_{k>=1} (-1)^k * log(k) / k^4.

%C First derivative of the Dirichlet eta function at 4.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DirichletEtaFunction.html">Dirichlet Eta Function</a>

%F Equals (Pi^4 * log(2) + 630 * zeta'(4)) / 720.

%e 0.0334788045785650663859568547887377997137597304057...

%t Flatten[{0, RealDigits[(Pi^4 Log[2] + 630 Zeta'[4])/720, 10, 120][[1]]}]

%o (PARI) sumalt(k=1, (-1)^k * log(k) / k^4) \\ _Michel Marcus_, Nov 12 2021

%Y Cf. A013662, A091812, A210593, A256358, A261506, A267315, A349220.

%K nonn,cons

%O 0,2

%A _Ilya Gutkovskiy_, Nov 12 2021