login
a(n) is the side length (size) of the smallest element in a simple perfect squared square of order n such that the ratio of the size of the smallest element to the size of the largest element of the square assumes a maximum over all possible A006983(n) dissections of order n.
7

%I #13 Nov 28 2021 01:20:58

%S 2,4,2,3,16,17,48,29,62,69,64,88,70,111,355,333,543

%N a(n) is the side length (size) of the smallest element in a simple perfect squared square of order n such that the ratio of the size of the smallest element to the size of the largest element of the square assumes a maximum over all possible A006983(n) dissections of order n.

%H Stuart E. Anderson, <a href="http://www.squaring.net/downloads/downloads.html#pss">Catalogues of Perfect Squared Squares</a>.

%H Hugo Pfoertner, <a href="/A349207/a349207.txt">Data of squares with maximum ratio</a>, (Nov 2021).

%H Rainer Rosenthal, <a href="/A349207/a349207_1.pdf">Illustration of sequence terms</a>, Nov 2021.

%e See Pfoertner link.

%Y A349208 gives the corresponding sizes of the largest elements that lead to the maximum ratio.

%Y Cf. A006983, A129947, A217149, A228953, A349205, A349206, A349209, A349210.

%K nonn,hard,more

%O 21,1

%A _Hugo Pfoertner_, Nov 22 2021