%I #15 Nov 14 2021 10:05:21
%S 0,0,1,1,2,1,2,2,3,3,4,3,4,3,3,2,3,2,3,3,4,4,5,4,5,5,6,6,7,6,7,6,6,5,
%T 6,5,6,5,5,4,4,5,5,4,4,3,4,3,4,3,3,2,3,2,3,3,4,4,5,4,5,5,6,6,7,6,7,6,
%U 6,5,6,5,6,6,7,7,8,7,8,8,9,9,10,9,10,9
%N a(n) is the Y-coordinate of the n-th point of the terdragon curve; sequence A349040 gives X-coordinates.
%C Coordinates are given on a hexagonal lattice with X-axis and Y-axis as follows (the Y-axis corresponds to the sixth primitive root of unity):
%C Y
%C /
%C /
%C 0 ---- X
%C The terdragon curve can be represented using an L-system.
%C A265671, when interpreted as a sequence of directions, yields the same curve.
%H Rémy Sigrist, <a href="/A349041/b349041.txt">Table of n, a(n) for n = 0..6561</a>
%H Rémy Sigrist, <a href="/A349040/a349040.png">Colored representation of the first 1 + 3^11 points of the terdragon curve</a> (where the hue is function of the number of steps from the origin)
%H Rémy Sigrist, <a href="/A349041/a349041.gp.txt">PARI program for A349041</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Dragon_curve#Terdragon">Terdragon</a>
%H <a href="/index/Con#coordinates_2D_curves">Index entries for sequences related to coordinates of 2D curves</a>
%e The terdragon curve starts (on a hexagonal lattice) as follows:
%e +-----+
%e 8\ 9
%e \
%e +-----+7
%e 6\ /4\
%e \5/ \
%e +-----+
%e 2\ 3
%e \
%e +-----+
%e 0 1
%e - so a(0) = a(1) = 0,
%e a(2) = a(3) = a(5) = 1,
%e a(4) = a(6) = a(7) = 2,
%e a(8) = a(9) = 3.
%o (PARI) See Links section.
%Y Cf. A080846, A265671, A349040.
%K sign
%O 0,5
%A _Rémy Sigrist_, Nov 06 2021