login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1; for n > 1, a(n) is the smallest number m such that sigma(m) = tau(m)^n or 0 if no such m exists.
4

%I #8 Sep 08 2022 08:46:26

%S 1,3,7,217,31,3937,127,57337,253921,917497,3670009,16252897,8191,

%T 61079603913818329,1073602561,4294434817,131071,66571993057,524287,

%U 1208766717309082486038529,9222228542614937599,17590038552577,500367932999371587367,281472829095937,1125897758834689

%N a(1) = 1; for n > 1, a(n) is the smallest number m such that sigma(m) = tau(m)^n or 0 if no such m exists.

%C See A051281 for numbers m such that sigma(m) = tau(m)^k where k = integer.

%C a(n) = 0 for n = 76, 81, ...

%e a(4) = 217 because 217 is the smallest number m such that sigma(m) = tau(m)^4; sigma(217) = 256 = tau(217)^4 = 4^4.

%t Table[Block[{m = n}, While[#2 != #1^n & @@ DivisorSigma[{0, 1}, m], m++]; m], {n, 10}] (* _Michael De Vlieger_, Nov 05 2021 *)

%o (Magma) [1] cat [Min([m: m in[2..10^6] | &+Divisors(m) eq #Divisors(m)^n]): n in [2..10]]

%Y Cf. A000005 (tau), A000203 (sigma), A051281, A334455, A349007.

%K nonn

%O 1,2

%A _Jaroslav Krizek_, Nov 05 2021