login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A064989(sigma(n) / gcd(sigma(n), A003961(n))), where A003961 shifts the prime factorization of n one step towards larger primes, while A064989 shifts it back towards smaller primes, and sigma is the sum of divisors function.
7

%I #15 Nov 28 2021 12:53:23

%S 1,1,1,5,2,1,1,3,11,2,2,5,5,1,2,29,4,11,3,1,1,2,2,1,29,5,1,5,6,2,1,5,

%T 2,4,2,55,17,3,5,3,10,1,7,5,22,2,2,29,34,29,4,25,8,1,4,3,1,6,6,1,29,1,

%U 11,113,2,2,13,5,2,2,4,11,31,17,29,15,2,5,3,29,49,10,10,5,8,7,2,3,12,22,5,5,1,2,6,5

%N a(n) = A064989(sigma(n) / gcd(sigma(n), A003961(n))), where A003961 shifts the prime factorization of n one step towards larger primes, while A064989 shifts it back towards smaller primes, and sigma is the sum of divisors function.

%H Antti Karttunen, <a href="/A348993/b348993.txt">Table of n, a(n) for n = 1..22968</a>

%H <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a>

%H <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>

%F a(n) = A064989(A349162(n)) = A064989(A348992(n)).

%t Array[Times @@ Map[If[#1 <= 2, 1, NextPrime[#1, -1]]^#2 & @@ # &, FactorInteger[#1/GCD[##]]] & @@ {DivisorSigma[1, #], Times @@ Map[NextPrime[#1]^#2 & @@ # &, FactorInteger[#]]} &, 96] (* _Michael De Vlieger_, Nov 11 2021 *)

%o (PARI)

%o A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };

%o A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};

%o A349162(n) = { my(s=sigma(n)); (s/gcd(s,A003961(n))); };

%o A348993(n) = A064989(A349162(n));

%Y Cf. A000203, A000265, A003961, A064989, A161942, A342671, A348992, A349162, A349169 (gives odd k for which a(k) = A319627(k)).

%K nonn,look

%O 1,4

%A _Antti Karttunen_, Nov 10 2021