login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A003959(n) - A129283(n), where A003959 is multiplicative with a(p^e) = (p+1)^e and A129283(n) is sum of n and its arithmetic derivative.
9

%I #31 Nov 16 2021 08:24:18

%S 0,0,0,1,0,1,0,7,1,1,0,8,0,1,1,33,0,9,0,10,1,1,0,40,1,1,10,12,0,11,0,

%T 131,1,1,1,48,0,1,1,54,0,13,0,16,12,1,0,164,1,13,1,18,0,57,1,68,1,1,0,

%U 64,0,1,14,473,1,17,0,22,1,15,0,204,0,1,14,24,1,19,0,230,67,1,0,80,1,1,1,96,0,75,1,28

%N a(n) = A003959(n) - A129283(n), where A003959 is multiplicative with a(p^e) = (p+1)^e and A129283(n) is sum of n and its arithmetic derivative.

%C There are no negative terms. We prove this by induction over the prime factorization of n, showing that A348507(n) >= A003415(n) for all values of n >= 1. At n=1, both sequences have value 0, and at the primes both sequences obtain the value 1, so the base cases hold. We know that A348507(n)-(n/p) = (p+1)*A348507(n/p) for all prime factors p of n (see comment in A348507). With the arithmetic derivative we obtain respectively that A003415(n) = A003415(p*(n/p)) = A003415(p)*(n/p) + p*A003415(n/p) = (n/p) + p*A003415(n/p), for any prime factor p of n. Now A348507(p*(n/p)) >= A003415(p*(n/p)) iff A348507(p*(n/p)) - (n/p) >= A003415(p*(n/p)) - (n/p), that is, iff (p+1)*A348507(n/p) >= p*A003415(n/p), which indeed follows by the induction hypothesis, which assumes that A348507(x) >= A003415(x) for all proper divisors x of n.

%H Antti Karttunen, <a href="/A348970/b348970.txt">Table of n, a(n) for n = 1..10000</a>

%H Antti Karttunen, <a href="/A348970/a348970.txt">Data supplement: n, a(n) computed for n = 1..65537</a>

%F a(n) = A003959(n) - A129283(n) = A003959(n) - (n+A003415(n)).

%F a(n) = A348029(n) - A211991(n).

%F a(n) = A348507(n) - A003415(n).

%F For all n >= 1, a(A001358(n)) = 1.

%t d[0] = d[1] = 0; d[n_] := n*Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); f[p_, e_] := (p + 1)^e; a[1] = 0; a[n_] := Times @@ f @@@ FactorInteger[n] - n - d[n]; Array[a, 100] (* _Amiram Eldar_, Nov 05 2021 *)

%o (PARI)

%o A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));

%o A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };

%o A348970(n) = (A003959(n) - (n+A003415(n)));

%Y Cf. A003415, A003959, A129283, A211991, A348029, A348507, A348971, A348972, A348973, A348974.

%Y Cf. A008578 (positions of zeros), A001358 (positions of ones).

%K nonn

%O 1,8

%A _Antti Karttunen_, Nov 05 2021