Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #9 Nov 09 2021 18:39:56
%S 1,2,3,4,5,2,7,8,9,10,11,6,13,7,5,16,17,18,19,20,21,22,23,8,25,26,27,
%T 1,29,10,31,32,11,34,35,36,37,38,39,8,41,7,43,22,45,23,47,24,49,50,17,
%U 52,53,18,55,56,57,58,59,30,61,31,63,64,65,11,67,68,23,35,71,72,73,74,75,38,77,26,79,80,81,82,83,3
%N a(n) = gcd(n, A099377(n)), where A099377(n) is the numerator of the harmonic mean of the divisors of n.
%F a(n) = gcd(n, A099377(n)) = gcd(n, A348510(n)) = gcd(A099377(n), A348510(n)).
%F a(n) = n / A348969(n).
%F a(n) = A099377(n) / A057021(n). [Apparently, holds at least up to n = 2^25]
%o (PARI)
%o A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
%o A099377(n) = { my(d=divisors(n)); numerator(#d/sum(k=1, #d, 1/d[k])); }; \\ From A099377
%o A348968(n) = gcd(n, A099377(n));
%Y Cf. A057021, A099377, A348510, A348969.
%K nonn
%O 1,2
%A _Antti Karttunen_, Nov 05 2021