login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = number of 3-regular one-face rooted maps on orientable surfaces of genus n.
4

%I #23 Nov 21 2024 07:54:52

%S 1,105,50050,56581525,117123756750,386078943500250,

%T 1857039718236202500,12277353837189093778125,

%U 106815706684397824557193750,1183197582943074702620035168750,16259070931137207808967206912537500,271431639969559736697533380065719781250

%N a(n) = number of 3-regular one-face rooted maps on orientable surfaces of genus n.

%C In the paper by Krasko et al. p. 18, Table 2, this sequence is designated "tau^(3)_(+)(g)".

%H Guillaume Chapuy, <a href="https://doi.org/10.1016/j.aam.2011.04.004">A new combinatorial identity for unicellular maps, via a direct bijective approach</a>, Advances in Applied Mathematics 47 (2011) 874-893; <a href="https://arxiv.org/abs/1006.5053">arXiv preprint</a>, arXiv:1006.5053 [math.CO], 2010.

%H Evgeniy Krasko, Igor Labutin, and Alexander Omelchenko, <a href="https://arxiv.org/abs/1901.06591">Enumeration of 3-regular one-face maps on orientable or non-orientable surface up to all symmetries</a>, arXiv:1901.06591 [math.CO], 2019.

%F a(n) = 2*(6*n-3)!/(12^n*n!*(3*n-2)!). - _Mireille Bousquet-Mélou_, Nov 20 2024

%Y Cf. A068182, A348795, A348796, A348797.

%K nonn

%O 1,2

%A _Michael De Vlieger_, Oct 31 2021