Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Dec 06 2021 01:52:08
%S 1,5,83,371,311,455713,2196879,77494559
%N a(n) is the smallest number that can be written as the sum of a prime number of consecutive primes in exactly n ways, or -1 if no such number exists.
%C Note that a(n) itself need not be a prime (compare A348791).
%e a(2) = 83 from 83 = 11+13+17+19+23 (5 primes) = 23+29+31 (3 primes).
%e a(3) = 371 from 371 = 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 (13 primes) = 41 + 43 + 47 + 53 + 59 + 61 + 67 (7 primes) = 113 + 127 + 131 (3 primes). - _Michael S. Branicky_, Nov 30 2021
%e a(4) = 311 from
%e 311 = 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 (11 primes)
%e = 31 + 37 + 41 + 43 + 47 + 53 + 59 (7 primes)
%e = 53 + 59 + 61 + 67 + 71 (5 primes)
%e = 101 + 103 + 107 (3 primes).
%e The 7 ways to get a(7), written as [count, first prime in sum, last prime in sum, # of primes in sum]: [1, 233, 39551, 4111], [2, 42323, 58909, 1531], [3, 135899, 142381, 557], [4, 710321, 711691, 109], [5, 1061087, 1062073, 73], [6, 4558349, 4558633, 17], [7, 15498871, 15498971, 5]. - _Hugo Pfoertner_, Nov 30 2021
%Y Cf. A082283. See A348791 for another version.
%K nonn,hard,more
%O 0,2
%A _Harvey P. Dale_ and _N. J. A. Sloane_, Nov 29 2021
%E a(6)-a(7) from _Hugo Pfoertner_, Nov 30 2021
%E a(3) and a(5) corrected by _Michael S. Branicky_, Nov 30 2021