Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Mar 27 2022 03:06:01
%S 1,6,270,14280,1027950,49945896,3576428856,206746398144,
%T 14538815734014,856120482145500,57732481295380320,3504640795033499160,
%U 243836930413853027160,14665028066155264295400,977424087385506563672160,61042393779786411602842080
%N a(n) = Sum_{x_1+x_2+x_3+x_4=n, 0 <= x_1 <=x_2 <= x_3 <= x_4 <= n} (3*n)!/((n-x_1)! * (n-x_2)! * (n-x_3)! * (n-x_4)!).
%H Vaclav Kotesovec, <a href="/A348701/b348701.txt">Table of n, a(n) for n = 0..535</a> (terms 0..200 from Seiichi Manyama)
%H Vaclav Kotesovec, <a href="/A348701/a348701.jpg">Plot of a(n+1)/a(n) for n = 1..500</a>
%t Table[Sum[If[a + b + c + d == n, (3 n)!/((n - a)!*(n - b)!*(n - c)!*(n - d)!), 0], {a, 0, n}, {b, 0, a}, {c, 0, b}, {d, 0, c}], {n, 0, 15}] (* _Michael De Vlieger_, Oct 30 2021 *)
%o (PARI) a(n) = sum(a=0, n, sum(b=a, n, sum(c=b, n, sum(d=c, n, if(a+b+c+d==n, (3*n)!/((n-a)!*(n-b)!*(n-c)!*(n-d)!), 0)))));
%Y Cf. A027306, A092473, A348704.
%Y Cf. A348700.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Oct 30 2021