Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Dec 18 2021 23:38:28
%S 1,-1,1,1,1,-3,1,1,4,-3,1,-2,1,-3,4,5,1,-6,1,-3,4,-3,1,2,6,-3,4,-3,1,
%T -11,1,5,4,-3,6,0,1,-3,4,0,1,-12,1,-3,9,-3,1,8,8,-8,4,-3,1,-12,6,-2,4,
%U -3,1,-5,1,-3,11,13,6,-12,1,-3,4,-15,1,0,1,-3,9,-3,8,-12,1,8
%N a(n) = Sum_{d|n, d <= sqrt(n)} (-1)^(d + n/d) * d.
%H Antti Karttunen, <a href="/A348608/b348608.txt">Table of n, a(n) for n = 1..20000</a>
%F G.f.: Sum_{k>=1} k * x^(k^2) / (1 + x^k).
%F a(n) = 1 if n = 1 or n is an odd prime (A006005) or n = 4 or n = 8. - _Bernard Schott_, Dec 18 2021
%t Table[DivisorSum[n, (-1)^(# + n/#) # &, # <= Sqrt[n] &], {n, 1, 80}]
%t nmax = 80; CoefficientList[Series[Sum[k x^(k^2)/(1 + x^k), {k, 1, nmax}], {x, 0, nmax}], x] // Rest
%o (PARI) a(n) = sumdiv(n, d, if (d<=sqrt(n), (-1)^(d + n/d)*d)); \\ _Michel Marcus_, Oct 25 2021
%Y Cf. A000593, A006005, A046897, A066839, A109506, A305152, A333782.
%K sign
%O 1,6
%A _Ilya Gutkovskiy_, Oct 25 2021