login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = F(n)*F(n+1) mod L(n+2) where F=A000045 is the Fibonacci numbers and L = A000032 is the Lucas numbers.
2

%I #18 Jan 26 2022 15:00:49

%S 0,1,2,6,15,11,10,45,99,79,65,312,675,545,442,2142,4623,3739,3026,

%T 14685,31683,25631,20737,100656,217155,175681,142130,689910,1488399,

%U 1204139,974170,4728717,10201635,8253295,6677057,32411112,69923043,56568929,45765226,222149070,479259663,387729211,313679522

%N a(n) = F(n)*F(n+1) mod L(n+2) where F=A000045 is the Fibonacci numbers and L = A000032 is the Lucas numbers.

%H Robert Israel, <a href="/A348592/b348592.txt">Table of n, a(n) for n = 0..4759</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (0,-1,1,5,3,2,1).

%F For n >= 1, a(n) = (A070352(n+2)*A000032(n+2) + 3*(-1)^n)/5.

%F a(n) + 2*a(n + 1) + 3*a(n + 2) + 5*a(n + 3) + a(n + 4) - a(n + 5) - a(n + 7) = 0 for n >= 1.

%F G.f.: -3 + 3/(5*(1+x)) + (3+x)/(2*(1-x-x^2)) + (9-4*x+6*x^2-x^3)/(10*(1+3*x^2+x^4)).

%e a(5) = F(5)*F(6) mod L(7) = 5*8 mod 29 = 11.

%p F:= combinat:-fibonacci:

%p L:= n -> F(n-1)+F(n+1):

%p seq(F(n)*F(n+1) mod L(n+2), n=0..20);

%t a[n_] := Mod[Fibonacci[n] * Fibonacci[n + 1], LucasL[n + 2]]; Array[a, 50, 0] (* _Amiram Eldar_, Jan 26 2022 *)

%Y Cf. A000032, A000045, A070352, A333599, A347861, A348591.

%K nonn,easy

%O 0,3

%A _J. M. Bergot_ and _Robert Israel_, Jan 25 2022