login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348558
Primes where every other digit is 1 starting with the rightmost digit, and no other digit is 1.
4
31, 41, 61, 71, 101, 131, 151, 181, 191, 2131, 2141, 2161, 3121, 3181, 3191, 5101, 5171, 6101, 6121, 6131, 6151, 7121, 7151, 8101, 8161, 8171, 8191, 9151, 9161, 9181, 10141, 10151, 10181, 12101, 12161, 13121, 13151, 13171, 15101, 15121, 15131, 15161, 16141
OFFSET
1,1
LINKS
MATHEMATICA
Select[Prime@Range@10000, (n=#; s={EvenQ, OddQ}; t=Take[IntegerDigits@n, {#}]&/@Select[Range@i, #]&/@If[EvenQ[i=IntegerLength@n], s, Reverse@s]; Union@Flatten@First@t=={1}&&FreeQ[Flatten@Last@t, 1])&] (* Giorgos Kalogeropoulos, Oct 22 2021 *)
eod1Q[p_]:=Module[{r=Reverse[IntegerDigits[p]]}, Union[Take[r, {1, -1, 2}]]=={1}&&FreeQ[ Take[ r, {2, -1, 2}], 1]]; Select[Prime[Range[2000]], eod1Q] (* Harvey P. Dale, May 28 2023 *)
PROG
(Python)
from sympy import primerange as primes
def ok(p):
s = str(p)
if not all(s[i] == '1' for i in range(-1, -len(s)-1, -2)): return False
return all(s[i] != '1' for i in range(-2, -len(s)-1, -2))
print(list(filter(ok, primes(1, 16142)))) # Michael S. Branicky, Oct 22 2021
(Python) # faster version for generating large initial segments of sequence
from sympy import isprime
from itertools import product
def eo1(maxdigits): # generator for every other digit is 1, no other 1's
yield 1
for d in range(2, maxdigits+1):
if d%2 == 0:
for f in "23456789":
f1 = f + "1"
for p in product("023456789", repeat=(d-1)//2):
yield int(f1 + "".join(p[i]+"1" for i in range(len(p))))
else:
for p in product("023456789", repeat=(d-1)//2):
yield int("1" + "".join(p[i]+"1" for i in range(len(p))))
print(list(filter(isprime, eo1(5)))) # Michael S. Branicky, Oct 22 2021
(Magma) f1:=func<n|forall{i:i in [1..#Intseq(n) by 2]| Intseq(n)[i] eq 1}>; fc:=func<n|forall{i:i in [2..#Intseq(n) by 2]| Intseq(n)[i] ne 1}>; [p:p in PrimesUpTo(17000)|f1(p) and fc(p)]; // Marius A. Burtea, Oct 22 2021
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Lars Blomberg, Oct 22 2021
STATUS
approved