login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integer partitions of n with the same alternating product as alternating sum.
0

%I #5 Nov 03 2021 09:08:29

%S 0,1,1,2,2,4,5,7,8,12,14,19,23,31,36,46,55,69,83,100,122,144,175,203,

%T 249,284,348,393,484,536,661,725,898,975,1208,1297,1614,1715,2136,

%U 2251,2812,2939,3674,3813,4779,4920,6172,6315,7943,8070,10156,10263,12944

%N Number of integer partitions of n with the same alternating product as alternating sum.

%C The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. In the case of a partition, this equals the number of odd parts in the conjugate partition.

%C We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

%e The a(1) = 1 through a(9) = 12 partitions:

%e 1 2 3 4 5 6 7 8 9

%e 111 211 221 42 322 332 333

%e 311 222 331 422 441

%e 11111 411 511 611 522

%e 21111 22111 4211 711

%e 31111 22211 22221

%e 1111111 41111 32211

%e 2111111 33111

%e 51111

%e 2211111

%e 3111111

%e 111111111

%e For example, we have 3 - 2 + 2 - 1 + 1 = 3 / 2 * 2 / 1 * 1 = 3, so the partition (3,2,2,1,1) is counted under a(9).

%t ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];

%t altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];

%t Table[Length[Select[IntegerPartitions[n],altprod[#]==ats[#]&]],{n,0,30}]

%Y The version for reverse-alternating sum (or product, or both) is A025065.

%Y Dominated by A347446.

%Y A000041 counts partitions with alternating sum 0.

%Y A027187 counts partitions of even length.

%Y A027193 counts partitions of odd length, ranked by A026424.

%Y A097805 counts compositions by sum and alternating sum.

%Y A103919 counts partitions by sum and alternating sum (reverse: A344612).

%Y A119620 counts partitions with alternating product 1, ranked by A028982.

%Y A124754 gives alternating sums of standard compositions.

%Y A277103 counts partitions with the same alternating sum as their conjugate.

%Y A345927 gives alternating sums of binary expansions.

%Y Cf. A000070, A000097, A001700, A025047, A236913, A325534, A325535, A339846, A344607, A345196, A347443, A347448.

%K nonn

%O 0,4

%A _Gus Wiseman_, Oct 30 2021