Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Sep 08 2022 08:46:26
%S 0,1,4,49,529,2209,6241,27889,28561,35344,49729,128881,192721,250000,
%T 431649,528529,703921,1181569,1495729,1610361,1868689,3411409,4870849,
%U 5755201,9138529,11390625,12250000,13830961,13845841,15737089,22648081,25391521,31618129
%N Squares whose second arithmetic derivative is a square.
%C For prime numbers of the form p = k^2 - 2 (A028871) the number m = p^2 is a term because m'' = (p^2)'' = (2*p*p')' = (2*p)'= p + 2*p' = p + 2 = k^2.
%C If m is a term in A028873 then p = m^2 - 3 is prime and k = p^4 is a term. Indeed: k' = 4*p^3 and k'' = 4*p^3 + 12*p^2 = 4*p^2*(p + 3) = 4*p^2*m^2.
%C If m is a term in A201787 then p = 5*m^2 - 6 is prime and k = p^6 is a term. Indeed: k' = 6*p^5 and k'' = 5*p^5 + 30*p^4 = 5*p^4*(p + 6) = 25*p^4*m^2.
%e 4'' = 4' = 4 so 4 is a term.
%e 49'' = 14' = 9 so 49 is a term.
%t d[0] = d[1] = 0; d[n_] := n * Plus @@ ((Last[#]/First[#]) & /@ FactorInteger[n]); Select[Range[0, 6000]^2, IntegerQ @ Sqrt[d[d[#]]] &] (* _Amiram Eldar_, Oct 18 2021 *)
%o (Magma) f:=func<n | n le 1 select 0 else n*(&+[Factorisation(n)[i][2] / Factorisation(n)[i][1]: i in [1..#Factorisation(n)]])>; [n:n in [s*s:s in [0.. 5623]] | IsSquare(Floor(f(Floor(f(n)))))];
%o (PARI) ad(n) = if (n<1, 0, my(f = factor(n)); n*sum(k=1, #f~, f[k, 2]/f[k, 1])); \\ A003415
%o lista(nn) = {for (n=0, nn, if (issquare(ad(ad(n^2))), print1(n^2, ", ")); ); } \\ _Michel Marcus_, Oct 30 2021
%Y Cf. A000290, A003415, A028871, A028873, A068346, A201787, A266890, A192192, A328244.
%K nonn
%O 1,3
%A _Marius A. Burtea_, Oct 18 2021