login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the length of the n-th row of A348433 when it is written as an irregular triangle.
3

%I #31 Oct 26 2021 07:47:38

%S 5,2,9,8,8,10,11,22,11,16,10,14,22,29,22,26,20,27,28,26,41,36,46,42,

%T 40,42,46,42,48,44,73,62,52,53,68,69,60,67,78,73,71,86,67,80,70,96,85,

%U 88,83,80,94,84,95,96,103,101,100,110,94,113,109,120,118,126

%N a(n) is the length of the n-th row of A348433 when it is written as an irregular triangle.

%H Michael De Vlieger, <a href="/A348408/b348408.txt">Table of n, a(n) for n = 1..5000</a>

%e When A348433 is written as an irregular triangle the first three rows are:

%e 1, 2, 4, 8, 16;

%e 7, 14;

%e 5, 10, 20, 40, 80, 160, 320, 640, 1280;

%e The lengths of the rows are [5, 2, 9] respectively, the same as the first three terms of this sequence.

%t c[1] = m = 1; Most@ Prepend[Differences[#], First[#]] &@ Reap[Do[If[IntegerQ[c[#]], Set[n, 2 m], Set[n, #]] &@ Total@ IntegerDigits[m]; If[m > n, Sow[i]]; Set[c[n], 1]; m = n, {i, 2^12}]][[-1, -1]] (* _Michael De Vlieger_, Oct 25 2021 *)

%o (PARI) lista(nn) = my(k, r, s, v=List([1])); for(n=1, nn, while(setsearch(vecsort(v), s=sumdigits(v[k++])), listput(v, 2*v[k])); listput(v, s); print1(k-r, ", "); r=k); \\ _Jinyuan Wang_, Oct 21 2021

%Y Cf. A348433.

%K nonn

%O 1,1

%A _Rodolfo Kurchan_, Oct 19 2021

%E More terms from _Jinyuan Wang_, Oct 21 2021