login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The 1's in the binary expansion of a(n) encode the distances between the 1's in the binary expansion of n.
1

%I #17 Oct 18 2021 01:38:54

%S 0,1,1,3,1,5,3,7,1,9,5,15,3,15,7,15,1,17,9,27,5,21,15,31,3,27,15,31,7,

%T 31,15,31,1,33,17,51,9,45,27,63,5,45,21,63,15,47,31,63,3,51,27,59,15,

%U 63,31,63,7,63,31,63,15,63,31,63,1,65,33,99,17,85,51

%N The 1's in the binary expansion of a(n) encode the distances between the 1's in the binary expansion of n.

%C The bit 2^d is set in a(n) iff for some e >= 0, the bits 2^e and 2^(e+d) are set in n.

%C This sequence has similarities with A067398; here we take the absolute differences, there the sums, of indices of 1's in binary expansions.

%C All terms are odd, except a(0) = 0.

%H Rémy Sigrist, <a href="/A348363/b348363.txt">Table of n, a(n) for n = 0..8192</a>

%H Rémy Sigrist, <a href="/A348363/a348363.png">Colored scatterplot of the first 2^20 terms</a> (where the color is function of the 2-adic valuation of n, upper red pixels correspond to odd n's)

%H <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a>

%F a(2*n) = a(n).

%F a(n) = n iff n = 0 or n belongs to A064896.

%F a(n) = 1 iff n is a power of 2 (A000079).

%F a(n) = 3 iff n belongs to A007283.

%F a(n) = 5 iff n belongs to A020714.

%F a(n) AND n = n for any odd number n (where AND denotes the bitwise AND operator).

%e The first terms, in decimal and in binary, are:

%e n a(n) bin(n) bin(a(n))

%e -- ---- ------ ---------

%e 0 0 0 0

%e 1 1 1 1

%e 2 1 10 1

%e 3 3 11 11

%e 4 1 100 1

%e 5 5 101 101

%e 6 3 110 11

%e 7 7 111 111

%e 8 1 1000 1

%e 9 9 1001 1001

%e 10 5 1010 101

%e 11 15 1011 1111

%e 12 3 1100 11

%e 13 15 1101 1111

%e 14 7 1110 111

%e 15 15 1111 1111

%t {0}~Join~Array[Total[2^Append[Union@ Abs[Subtract @@@ Permutations[1 + Length[#] - Position[#, 1][[All, 1]] &@ IntegerDigits[#, 2], {2}]], 0]] &, 70] (* _Michael De Vlieger_, Oct 16 2021 *)

%o (PARI) a(n) = { my (b=vector(hammingweight(n))); for (k=1, #b, n-=2^b[k]=valuation(n, 2);); my (p=setbinop((i,j)->abs(i-j), b)); sum (k=1, #p, 2^p[k]) }

%o (Python)

%o def a(n):

%o locs = [e for e in range(n.bit_length()) if 1 & (n>>e)]

%o diffs = set(abs(e1-e2) for i, e1 in enumerate(locs) for e2 in locs[i:])

%o return sum(2**d for d in diffs)

%o print([a(n) for n in range(71)]) # _Michael S. Branicky_, Oct 16 2021

%Y Cf. A000079, A007283, A020714, A064896, A067398.

%K nonn,base

%O 0,4

%A _Rémy Sigrist_, Oct 15 2021