login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{d|n} d^(tau(d) - 1).
1

%I #12 Oct 15 2021 08:38:24

%S 1,3,4,19,6,222,8,531,85,1008,12,249070,14,2754,3384,66067,18,1889871,

%T 20,3201024,9272,10662,24,4586721006,631,17592,19768,17213138,30,

%U 21870004602,32,33620499,35952,39324,42888,2821112046175,38,54894,59336,163843201536

%N a(n) = Sum_{d|n} d^(tau(d) - 1).

%F G.f.: Sum_{k>=1} k^(tau(k) - 1) * x^k/(1 - x^k).

%F If p is prime, a(p) = 1 + p.

%t a[n_] := DivisorSum[n, #^(DivisorSigma[0, #] - 1) &]; Array[a, 40] (* _Amiram Eldar_, Oct 14 2021 *)

%o (PARI) a(n) = sumdiv(n, d, d^(numdiv(d)-1));

%o (PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, k^(numdiv(k)-1)*x^k/(1-x^k)))

%Y Cf. A000005 (tau), A174937, A347405, A347992, A348350.

%K nonn

%O 1,2

%A _Seiichi Manyama_, Oct 14 2021