login
A348301
a(n) is the difference between the numerator and denominator of the (reduced) fraction Sum_{i = 1..n} 1/prime(i).
2
-1, -1, 1, 37, 617, 10331, 205657, 4417993, 111313529, 3451185211, 113456434771, 4398448576657, 187757129777747, 8377806843970331, 406839682998275587, 22177392981497097521, 1341055344385518798469, 83727136357670859345679, 5727006517323354547143763
OFFSET
1,4
LINKS
FORMULA
a(n) = (Sum_{i = 1..n} p_n# / p_i) - p_n# where p_n# is the primorial of the n-th prime.
a(n) = A024451(n) - A002110(n).
EXAMPLE
a(1) = (p_1# / p_1) - p_1 = (2 / 2) - 2 = -1.
a(2) = (p_2# / p_1 + p_2# * p_2) - p_1 * p_2 = (6 / 2 + 6 / 3) - 2 * 3 = -1.
a(3) = 2*3*5/2 + 2*3*5/3 + 2*3*5/5 - 2*3*5 = 31 - 30 = 1.
MATHEMATICA
Numerator[#]-Denominator[#]&/@Accumulate[1/Prime[Range[20]]] (* Harvey P. Dale, Feb 05 2023 *)
PROG
(Python)
from itertools import islice
from sympy import primorial, sieve
def a(n): return sum(primorial(n) // p for p in islice(sieve, n)) - primorial(n) # Greg Tener, Oct 18 2021
(PARI) a(n) = my(q=sum(i=1, n, 1/prime(i))); numerator(q)-denominator(q); \\ Michel Marcus, Oct 18 2021
CROSSREFS
Cf. A024451 (numerators), A002110 (denominators).
Sequence in context: A056217 A105464 A140764 * A228225 A156923 A338003
KEYWORD
sign
AUTHOR
Greg Tener, Oct 10 2021
STATUS
approved