login
A 5 X 5 pandiagonal magic square read by rows: the entries have digits which are only 0's and 1's and form a magic square in any base b >= 2.
2

%I #14 Dec 05 2021 00:21:53

%S 11,1100,110000,11000000,1100000000,10010000,1001000000,100000001,110,

%T 101000,100000100,100010,10001000,1000010000,1000001,1000001000,10001,

%U 1000100,100100000,10000010,1100000,110000000,1000000010,1001,10100

%N A 5 X 5 pandiagonal magic square read by rows: the entries have digits which are only 0's and 1's and form a magic square in any base b >= 2.

%C The magic square is:

%C [ 11, 1100, 110000, 11000000, 1100000000 ]

%C [ 10010000, 1001000000, 100000001, 110, 101000 ]

%C [ 100000100, 100010, 10001000, 1000010000, 1000001 ]

%C [ 1000001000, 10001, 1000100, 100100000, 10000010 ]

%C [ 1100000, 110000000, 1000000010, 1001, 10100 ]

%C The magic sum of any row, column or diagonal is 1111111111.

%C This has the form

%C A+B C+D E+F G+H I+J

%C E+H G+J A+I C+B D+F

%C C+I B+F D+H E+J G+A

%C D+J A+E G+C I+F B+H

%C G+F I+H B+J A+D C+E

%C with magic sum = A+B+C+D+E+F+G+H+I+J.

%H <a href="/index/Mag#magic">Index entries for sequences related to magic squares</a>

%F (C#)

%F long[,] A348269()

%F {

%F long A = 1;

%F long B = 10;

%F long C = 100;

%F long D = 1000;

%F long E = 10000;

%F long F = 100000;

%F long G = 1000000;

%F long H = 10000000;

%F long I = 100000000;

%F long J = 1000000000;

%F return new long[,] {

%F { A+B, C+D, E+F, G+H, I+J },

%F { E+H, G+J, A+I, C+B, D+F },

%F { C+I, B+F, D+H, E+J, G+A},

%F { D+J, A+E, G+C, I+F, B+H },

%F { G+F, I+H, B+J, A+D, C+E }

%F };

%F }

%Y Cf. A347911.

%K nonn,fini,full

%O 1,1

%A _Chittaranjan Pardeshi_, Oct 09 2021