login
A348221
Denominators of coefficients for numerical integration of certain differential systems (Array A(i,k) read by ascending antidiagonals).
1
1, 1, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 3, 1, 90, 1, 1, 3, 3, 90, 45, 1, 1, 3, 3, 90, 90, 3780, 1, 1, 3, 1, 90, 1, 3780, 140, 1, 1, 3, 3, 90, 90, 756, 945, 113400, 1, 1, 3, 3, 90, 45, 756, 756, 16200, 14175, 1, 1, 3, 1, 90, 10, 3780, 1, 113400, 1400, 7484400
OFFSET
0,6
COMMENTS
See A348220.
REFERENCES
Paul Curtz, Intégration numérique des systèmes différentiels à conditions initiales. Note no. 12 du Centre de Calcul Scientifique de l'Armement, page 127, 1969.
FORMULA
Denominators of A(i,k) where:
A(i,k) = (1/k!)*Integral_(-1,1) Product(u+j, (j, -k+1 .. 0)) du for i=0.
A(i,k) = A(i-1, k-1) + A(i-1, k) for i>0.
EXAMPLE
Array begins:
2, 0, 1/3, -1/3, 29/90, -14/45, 1139/3780, -41/140, ...
2, 2, 1/3, 0, -1/90, 1/90, -37/3780, 8/945, ...
2, 4, 7/3, 1/3, -1/90, 0, 1/756, -1/756, ...
2, 6, 19/3, 8/3, 29/90, -1/90, 1/756, 0, ...
2, 8, 37/3, 9, 269/90, 14/45, -37/3780, 1/756, ...
2, 10, 61/3, 64/3, 1079/90, 33/10, 1139/3780, -8/945, ...
2, 12, 91/3, 125/3, 2999/90, 688/45, 13613/3780, 41/140, ...
2, 14, 127/3, 72, 6749/90, 875/18, 14281/756, 736/189, ...
2, 16, 169/3, 343/3, 13229/90, 618/5, 51031/756, 17225/756, ...
...
MATHEMATICA
A[i_ /; i >= 0, k_ /; k >= 0] := A[i, k] = If[i == 0, (1/k!) Integrate[ Product[u + j, {j, -k + 1, 0}], {u, -1, 1}], A[i - 1, k - 1] + A[i - 1, k]]; A[_, _] = 0;
Table[A[i - k, k] // Denominator, {i, 0, 10}, {k, 0, i}] // Flatten
CROSSREFS
Cf. A002681, A002682, A348220 (numerators).
Sequence in context: A099545 A300867 A269301 * A132429 A046540 A123191
KEYWORD
nonn,tabl,frac
AUTHOR
STATUS
approved