login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348221
Denominators of coefficients for numerical integration of certain differential systems (Array A(i,k) read by ascending antidiagonals).
1
1, 1, 1, 1, 1, 3, 1, 1, 3, 3, 1, 1, 3, 1, 90, 1, 1, 3, 3, 90, 45, 1, 1, 3, 3, 90, 90, 3780, 1, 1, 3, 1, 90, 1, 3780, 140, 1, 1, 3, 3, 90, 90, 756, 945, 113400, 1, 1, 3, 3, 90, 45, 756, 756, 16200, 14175, 1, 1, 3, 1, 90, 10, 3780, 1, 113400, 1400, 7484400
OFFSET
0,6
COMMENTS
See A348220.
REFERENCES
Paul Curtz, Intégration numérique des systèmes différentiels à conditions initiales. Note no. 12 du Centre de Calcul Scientifique de l'Armement, page 127, 1969.
FORMULA
Denominators of A(i,k) where:
A(i,k) = (1/k!)*Integral_(-1,1) Product(u+j, (j, -k+1 .. 0)) du for i=0.
A(i,k) = A(i-1, k-1) + A(i-1, k) for i>0.
EXAMPLE
Array begins:
2, 0, 1/3, -1/3, 29/90, -14/45, 1139/3780, -41/140, ...
2, 2, 1/3, 0, -1/90, 1/90, -37/3780, 8/945, ...
2, 4, 7/3, 1/3, -1/90, 0, 1/756, -1/756, ...
2, 6, 19/3, 8/3, 29/90, -1/90, 1/756, 0, ...
2, 8, 37/3, 9, 269/90, 14/45, -37/3780, 1/756, ...
2, 10, 61/3, 64/3, 1079/90, 33/10, 1139/3780, -8/945, ...
2, 12, 91/3, 125/3, 2999/90, 688/45, 13613/3780, 41/140, ...
2, 14, 127/3, 72, 6749/90, 875/18, 14281/756, 736/189, ...
2, 16, 169/3, 343/3, 13229/90, 618/5, 51031/756, 17225/756, ...
...
MATHEMATICA
A[i_ /; i >= 0, k_ /; k >= 0] := A[i, k] = If[i == 0, (1/k!) Integrate[ Product[u + j, {j, -k + 1, 0}], {u, -1, 1}], A[i - 1, k - 1] + A[i - 1, k]]; A[_, _] = 0;
Table[A[i - k, k] // Denominator, {i, 0, 10}, {k, 0, i}] // Flatten
CROSSREFS
Cf. A002681, A002682, A348220 (numerators).
Sequence in context: A099545 A300867 A269301 * A132429 A046540 A123191
KEYWORD
nonn,tabl,frac
AUTHOR
STATUS
approved