login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n such that 5*(greatest part) = (number of parts).
3

%I #24 Oct 18 2024 03:54:23

%S 0,0,0,0,1,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,3,3,5,5,7,8,10,11,15,16,20,

%T 22,26,28,35,38,46,52,62,70,85,95,112,127,148,166,195,219,254,288,332,

%U 375,435,489,562,635,726,817,936,1051,1198,1348,1531,1721,1957,2196,2489

%N Number of partitions of n such that 5*(greatest part) = (number of parts).

%C Also, the number of partitions of n such that (greatest part) = 5*(number of parts).

%H Vaclav Kotesovec, <a href="/A348164/b348164.txt">Table of n, a(n) for n = 1..10000</a>

%F G.f.: Sum_{k>=1} x^(6*k-1) * Product_{j=1..k-1} (1-x^(5*k+j-1))/(1-x^j).

%F a(n) ~ 5 * Pi^5 * exp(Pi*sqrt(2*n/3)) / (9 * 2^(3/2) * n^(7/2)). - _Vaclav Kotesovec_, Oct 17 2024

%e a(19) = 3 counts these partitions:

%e [3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

%e [3, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],

%e [2, 2, 2, 2, 2, 2, 2, 2, 2, 1].

%t nmax = 100; Rest[CoefficientList[Series[Sum[x^(6*k-1) * Product[(1 - x^(5*k+j-1)) / (1 - x^j), {j, 1, k-1}], {k, 1, nmax/6 + 1}], {x, 0, nmax}], x]] (* _Vaclav Kotesovec_, Oct 15 2024 *)

%t nmax = 100; p = x^4; s = x^4; Do[p = Normal[Series[p*x^6*(1 - x^(6*k - 1))*(1 - x^(6*k))*(1 - x^(6*k + 1))*(1 - x^(6*k + 2))*(1 - x^(6*k + 3))*(1 - x^(6*k + 4))/((1 - x^(5*k + 4))*(1 - x^(5*k + 3))*(1 - x^(5*k + 2))*(1 - x^(5*k + 1))*(1 - x^(5*k))*(1 - x^k)), {x, 0, nmax}]]; s += p;, {k, 1, nmax/6 + 1}]; Take[CoefficientList[s, x], nmax] (* _Vaclav Kotesovec_, Oct 16 2024 *)

%o (PARI) my(N=66, x='x+O('x^N)); concat([0, 0, 0, 0], Vec(sum(k=1, N, x^(6*k-1)*prod(j=1, k-1, (1-x^(5*k+j-1))/(1-x^j)))))

%Y Column 5 of A350879.

%Y Cf. A350897, A350899.

%K nonn

%O 1,17

%A _Seiichi Manyama_, Jan 25 2022