login
Number of transitive relations involving all the elements of an n-set.
0

%I #58 Apr 28 2023 19:59:31

%S 1,1,10,137,3381,135922,8546045,815422505,115437178060,23821722677391,

%T 7063938719374373,2974488705436714248,1760838176228838354751,

%U 1452937749988032952760937,1658737103542768935354921618,2603190753864086778265813466485,5584324950136613655245377359839793

%N Number of transitive relations involving all the elements of an n-set.

%H Firdous Ahmad Mala, <a href="https://doi.org/10.26855/jamc.2023.03.011">Some New Integer Sequences of Transitive Relations</a>, J. Appl. Math. Comp. (2023) Vol. 7, No. 1, 108-111.

%F a(n) = Sum_{k=0..n} (-1)^k*binomial(n,k)*A006905(n-k).

%e a(3) = A006905(3) - 1 - 3 - 30 = 137, where the numbers of transitive relations involving 0,1,2 elements on a 3-set are 1,3,30.

%Y Cf. A006905.

%K nonn

%O 0,3

%A _Firdous Ahmad Mala_, Oct 02 2021