The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A348126 a(n) is the least k for which x(k) > Sum_{j=1..k} 1/j, where x(k) is the Newton iterate (starting from x(1)=1) for exp(-P(n,x)) and P(n,x) is the n-th Maclaurin polynomial for exp(x). 0
 2, 3, 11, 36, 104, 287, 776, 2074, 5519, 14672, 38999, 103709, 275970, 734862, 1958108, 5220797, 13927895, 37176046, 99277815, 265238573, 708928640, 1895558566, 5070252360 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Conjecture: a(n) is finite for every positive integer n, and a(n) approaches infinity with n. LINKS EXAMPLE Let H(k) = Sum_{j=1..k} 1/j, i.e., the k-th harmonic number. a(1)=2: Newton's method applied to f(x)=exp(-1-x) starting at x(1)=1 gives x(1)=1, x(2)=2, whereas H(1)=1 and H(2)=1.5. a(3)=11: Newton's method applied to f(x) = exp(-1 - x - x^2/2 - x^3/6) starting at x(1)=1 gives x(10)=2.91631 and x(11)=3.03873, whereas H(10)=2.92897 and H(11)=3.01988. PROG (PARI) a(n)= {default(seriesprecision, n); default(realprecision, max(38, 2*#digits(n!, 10))); Tp = truncate(taylor(exp(x), x, n)); t=1.0; hsum=1.0; j=1; while(t<=hsum, j=j+1; t=t+1.0/subst(Tp, x, t); hsum = hsum + 1.0/j); j; } CROSSREFS Cf. A001008, A002805. Sequence in context: A305846 A057838 A219497 * A006497 A038912 A019361 Adjacent sequences: A348123 A348124 A348125 * A348127 A348128 A348129 KEYWORD nonn,more AUTHOR Jennifer Sirkin, Oct 01 2021 EXTENSIONS a(15) inserted by Jinyuan Wang, Dec 10 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 5 19:48 EST 2023. Contains 360087 sequences. (Running on oeis4.)