login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of compositions of n where the smallest part is smaller than the number of parts.
1

%I #17 Apr 14 2022 03:11:57

%S 0,1,3,6,13,28,59,122,248,501,1009,2028,4070,8159,16343,32717,65472,

%T 130991,262041,524157,1048410,2096943,4194043,8388285,16776819,

%U 33553946,67108270,134217002,268434568,536869825,1073740493,2147482019,4294965305,8589932164

%N Number of compositions of n where the smallest part is smaller than the number of parts.

%H Alois P. Heinz, <a href="/A348124/b348124.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) + A098132(n) + A098133(n) = 2^(n-1).

%p b:= proc(n, s, c) option remember; `if`(s<c, ceil(2^(n-1)),

%p `if`(n=0, 0, add(b(n-j, min(j, s), c+1), j=1..n)))

%p end:

%p a:= n-> b(n$2, 0):

%p seq(a(n), n=1..40); # _Alois P. Heinz_, Oct 01 2021

%t b[n_, s_, c_] := b[n, s, c] = If[s < c, Ceiling[2^(n - 1)],

%t If[n == 0, 0, Sum[b[n - j, Min[j, s], c + 1], {j, 1, n}]]];

%t a[n_] := b[n, n, 0];

%t Table[a[n], {n, 1, 40}] (* _Jean-François Alcover_, Apr 14 2022, after _Alois P. Heinz_ *)

%Y Cf. A011782, A098132, A098133.

%K nonn

%O 1,3

%A _R. J. Mathar_, Oct 01 2021

%E a(23)-a(34) from _Alois P. Heinz_, Oct 01 2021