login
A348067
Matula-Goebel tree number of tree n with a new leaf added below each existing vertex.
3
2, 6, 26, 18, 202, 78, 122, 54, 338, 606, 2462, 234, 794, 366, 2626, 162, 1346, 1014, 502, 1818, 1586, 7386, 4546, 702, 20402, 2382, 4394, 1098, 8914, 7878, 43954, 486, 32006, 4038, 12322, 3042, 2962, 1506, 10322, 5454, 12178, 4758, 4946, 22158, 34138, 13638
OFFSET
1,1
COMMENTS
k times nested a(a(...a(1))) = A076146(k+1) is the Matula-Goebel number of the binomial tree order k constructed by an "expansion" method starting from a singleton and successively adding a new leaf under every vertex.
FORMULA
a(n) = 2 * Product_{i=1..k} prime(a(primepi(p[i]))), where n = p[1]*...*p[k] is the prime factorization of n with multiplicity (A027746).
EXAMPLE
tree n=6 tree a(6) = 78
R R___ root R
| \ |\ \
A B A @ B new vertices
| |\ \ "@" below each
C C @ @ existing
\
@
PROG
(PARI) a(n) = my(f=factor(n)); 2*factorback([prime(self()(primepi(p))) | p<-f[, 1]], f[, 2]);
CROSSREFS
Cf. A027746 (prime factors), A076146 (binomial tree).
Cf. A297002 (add leaves under children of the root).
Sequence in context: A109286 A009466 A372892 * A032479 A029988 A050573
KEYWORD
nonn
AUTHOR
Kevin Ryde, Oct 01 2021
STATUS
approved