login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k for which sigma(k)/k = 832/225.
0

%I #13 Oct 07 2021 01:57:31

%S 94500,195300,1674000,27432000,56692800,325883250,735257250,

%T 113232384000,234013593600,28990808064000,59914336665600,

%U 463855583232000,559625737239000,958634872012800,1373356918809000,7782220152472338432000,16083254981776166092800,8972288971548182138209587578844217344000

%N Numbers k for which sigma(k)/k = 832/225.

%C This sequence contains terms of the form 3375*P and 6975*Q, where P is a perfect number (A000396) not divisible by 3 or 5, and Q is a perfect number not divisible by 3, 5, or 31. Proof: sigma(3375*P)/(3375*P) = sigma(3375)*sigma(P)/(3375*P) = 6240*(2*P)/(3375*P) = 832/225 and sigma(6975*Q)/(6975*Q) = sigma(6975)*sigma(Q)/(6975*Q) = 12896*(2*Q)/(6975*P) = 832/225. QED

%C Many terms ending in "00" will have one of these forms:

%C a( 1) = 94500 = 3375* 28 = 3375*A000396(2)

%C a( 2) = 195300 = 6975* 28 = 6975*A000396(2)

%C a( 3) = 1674000 = 3375* 496 = 3375*A000396(3)

%C a( 4) = 27432000 = 3375* 8128 = 3375*A000396(4)

%C a( 5) = 56692800 = 6975* 8128 = 6975*A000396(4)

%C a( 8) = 113232384000 = 3375* 33550336 = 3375*A000396(5)

%C a( 9) = 234013593600 = 6975* 33550336 = 6975*A000396(5)

%C a(10) = 28990808064000 = 3375* 8589869056 = 3375*A000396(6)

%C a(11) = 59914336665600 = 6975* 8589869056 = 6975*A000396(6)

%C a(12) = 463855583232000 = 3375* 137438691328 = 3375*A000396(7)

%C a(14) = 958634872012800 = 6975* 137438691328 = 6975*A000396(7)

%C a(16) = 7782220152472338432000 = 3375*2305843008139952128 = 3375*A000396(8)

%C a(17) = 16083254981776166092800 = 6975*2305843008139952128 = 6975*A000396(8).

%H G. P. Michon, <a href="http://www.numericana.com/answer/numbers.htm#multiperfect">Multiperfect Numbers and Hemiperfect Numbers</a>

%H Walter Nissen, <a href="http://upforthecount.com/math/abundance.html">Abundancy: Some Resources (preliminary version 4)</a>

%H Walter Nissen, <a href="http://upforthecount.com/math/ffp8.html">Primitive Friendly Pairs with friends < 2^34 with denom < 20000</a>

%e 325883250 is a term, since sigma(325883250)/325883250 = 1205043840/325883250 = 832/225.

%t Select[Range[5*10^8], DivisorSigma[1, #]/# == 832/225 &]

%t Do[If[DivisorSigma[1, k]/k == 832/225, Print[k]], {k, 5*10^8}]

%Y Cf. A000203, A000396, A211680, A212610.

%Y Subsequence of A005101.

%K nonn

%O 1,1

%A _Timothy L. Tiffin_, Sep 24 2021

%E More terms from _Michel Marcus_, Oct 03 2021