login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Largest increment in the trajectory from n to 1 in the Collatz map (or 3x+1 problem), or -1 if no such trajectory exists.
2

%I #56 Oct 25 2022 00:41:59

%S 0,0,11,0,11,11,35,0,35,11,35,11,27,35,107,0,35,35,59,11,43,35,107,11,

%T 59,27,6155,35,59,107,6155,0,67,35,107,35,75,59,203,11,6155,43,131,35,

%U 91,107,6155,11,99,59,155,27,107,6155,6155,35,131,59,203,107

%N Largest increment in the trajectory from n to 1 in the Collatz map (or 3x+1 problem), or -1 if no such trajectory exists.

%C The largest increment occurs when the trajectory reaches its largest value via a 3x+1 step.

%C All nonzero terms are odd, since they are of the form 2k+1, for some k >= 5.

%H <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>

%F If n = 2^k (for k >= 0), a(n) = 0; otherwise a(n) = 2*A087232(n)+1 = (2*A025586(n)+1)/3 = A025586(n)-A087232(n).

%e a(3) = 11 because the trajectory starting at 3 is 3 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1, and the largest increment (from 5 to 16) is 11.

%e a(4) = 0 because there are only halving steps in the Collatz trajectory starting at 4.

%t nterms=100;Table[c=n;mr=0;While[c>1,If[OddQ[c],mr=Max[mr,2c+1];c=3c+1,c/=2^IntegerExponent[c,2]]];mr,{n,nterms}]

%o (Python)

%o def A348006(n):

%o c, mr = n, 0

%o while c > 1:

%o if c % 2:

%o mr = max(mr, 2*c+1)

%o c = 3*c+1

%o else:

%o c //= 2

%o return mr

%o print([A348006(n) for n in range(1, 100)])

%o (PARI) a(n)=n>>=valuation(n,2); my(r); while(n>1, my(t=2*n+1); n+=t; n>>=valuation(n,2); if(t>r, r=t)); r \\ _Charles R Greathouse IV_, Oct 25 2022

%Y Cf. A006370, A025586, A070165, A087232.

%K nonn,easy

%O 1,3

%A _Paolo Xausa_, Oct 02 2021