%I #8 Sep 30 2021 11:42:27
%S 1,1,1,1,5,1,1,17,17,1,1,47,242,47,1,1,113,3071,3071,113,1,1,245,
%T 34477,232290,34477,245,1,1,491,341633,16665755,16665755,341633,491,1,
%U 1,920,3022045,1073874283,8241549097,1073874283,3022045,920,1,1,1635,24145695
%N Triangle read by rows: T(n, k) is the number of k-dimensional subspaces in (F_8)^n, counted up to coordinate permutation (n >= 0, 0 <= k <= n).
%C Columns can be computed by a method analogous to that of Fripertinger for isometry classes of linear codes, disallowing scalar transformation of individual coordinates.
%C Regarding the formula for column k = 1, note that A241926(q - 1, n) counts, up to coordinate permutation, one-dimensional subspaces of (F_q)^n generated by a vector with no zero component.
%H Álvar Ibeas, <a href="/A347974/b347974.txt">Entries up to T(10, 4)</a>
%H H. Fripertinger, <a href="http://www.mathe2.uni-bayreuth.de/frib/codes/tables.html">Isometry classes of codes</a>
%H Álvar Ibeas, <a href="/A347974/a347974.txt">Column k=1 up to n=100</a>
%H Álvar Ibeas, <a href="/A347974/a347974_1.txt">Column k=2 up to n=100</a>
%H Álvar Ibeas, <a href="/A347974/a347974_2.txt">Column k=3 up to n=100</a>
%H Álvar Ibeas, <a href="/A347974/a347974_3.txt">Column k=4 up to n=100</a>
%F T(n, 1) = T(n - 1, 1) + A032192(n + 7).
%e Triangle begins:
%e k: 0 1 2 3 4 5
%e --------------------------
%e n=0: 1
%e n=1: 1 1
%e n=2: 1 5 1
%e n=3: 1 17 17 1
%e n=4: 1 47 242 47 1
%e n=5: 1 113 3071 3071 113 1
%e There are 9 = A022172(2, 1) one-dimensional subspaces in (F_8)^2. Among them, <(1, 1)> is invariant by coordinate swap and the rest are grouped in orbits of size two. Hence, T(2, 1) = 5.
%Y Cf. A022172, A032192, A241926.
%K nonn,tabl
%O 0,5
%A _Álvar Ibeas_, Sep 21 2021