login
A347869
Number of partitions of n such that 5*(greatest part) >= (number of parts).
2
1, 2, 3, 5, 7, 10, 14, 21, 29, 41, 55, 75, 98, 131, 171, 225, 290, 376, 479, 613, 775, 981, 1231, 1545, 1923, 2393, 2959, 3656, 4492, 5515, 6737, 8223, 9994, 12133, 14676, 17732, 21351, 25679, 30793, 36879, 44049, 52549, 62535, 74329, 88153, 104418, 123437, 145746, 171765, 202193
OFFSET
1,2
COMMENTS
Also, the number of partitions of n such that (greatest part) <= 5*(number of parts).
FORMULA
G.f.: Sum_{k>=1} x^k * Product_{j=1..k} (1-x^(5*k+j-1))/(1-x^j).
PROG
(PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, x^k*prod(j=1, k, (1-x^(5*k+j-1))/(1-x^j))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jan 25 2022
STATUS
approved