|
|
A347841
|
|
a(n) is the number of (strict) chains of subspaces with ends 0 and (F_3)^n.
|
|
2
|
|
|
1, 5, 79, 3851, 567733, 251790113, 335313799327, 1340040415899803, 16067553466179577453, 577986341168068075687337, 62375143109859674070751394743, 20194282336027244435564571244298243, 19614041602745899032342581715038226919285
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
Álvar Ibeas, Table of n, a(n) for n = 1..40
|
|
FORMULA
|
a(n) = Sum_{L partition of n} A347486(n, L) * A036038(len(L), sig(L)), where sig(L) is the partition composed by the part multiplicities of L.
|
|
EXAMPLE
|
a(3) = 79 = 1 * 1 + 13 * 2 + 52 * 1, counting:
the unrefined chain 0 < (F_3)^3;
13 chains 0 < V < (F_3)^3, with dim(V) = 1; another
13 chains 0 < V < (F_3)^3, with dim(V) = 2; and
52 chains 0 < V_1 < V_2 < (F_3)^3.
|
|
CROSSREFS
|
Cf. A289545, A347486, A036038.
Sequence in context: A293786 A141828 A134531 * A062250 A131284 A105917
Adjacent sequences: A347838 A347839 A347840 * A347842 A347843 A347844
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Álvar Ibeas, Sep 15 2021
|
|
STATUS
|
approved
|
|
|
|