login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of compositions (ordered partitions) of n into at most 2 nonprime parts.
6

%I #12 Nov 28 2022 03:39:50

%S 1,1,1,0,1,2,1,2,2,3,5,2,4,4,5,5,8,4,8,6,8,7,11,6,12,9,13,9,14,10,16,

%T 12,14,13,19,13,22,14,17,17,22,16,24,18,22,19,25,18,28,21,28,21,28,22,

%U 32,25,30,25,33,26,38,28,31,29,38,29,42,30,34,33,42

%N Number of compositions (ordered partitions) of n into at most 2 nonprime parts.

%H Antti Karttunen, <a href="/A347788/b347788.txt">Table of n, a(n) for n = 0..10000</a>

%t Table[Length@Flatten[Permutations/@IntegerPartitions[n,2,Select[Range@n,!PrimeQ@#&]],1],{n,0,70}] (* _Giorgos Kalogeropoulos_, Sep 13 2021 *)

%o (PARI) A347788(n) = if(n<2,1,!isprime(n)+sum(k=1,n-1,!(isprime(k)+isprime(n-k)))); \\ _Antti Karttunen_, Nov 25 2022

%Y Cf. A005171, A018252, A052284, A076608, A347796, A347797, A347798, A347799, A358638.

%K nonn

%O 0,6

%A _Ilya Gutkovskiy_, Sep 13 2021