Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Jul 16 2022 01:08:00
%S 1,1,11,10,11,101,110,100,111,1001,1100,1010,1100,1001,11101,10000,
%T 11000,10110,11000,10001,111001,100100,110000,101000,110010,100100,
%U 111001,1000001,1100000,1011100,1100000,1000000,1110010,1001000,1100101,10100001,11000000,10010000,11100100
%N a(n) is the concatenation of terms in the n-th row of triangle A237048.
%C The number of ones in a(n) equals A001227(n).
%C The number of zeros in a(n) equals A238005(n).
%C The number of digits in a(n) equals A003056(n).
%C Therefore A238005(n) = A003056(n) - A001227(n).
%C For further information see theorem A in A238005.
%C For a nice bitmap see A347266.
%H Michael De Vlieger, <a href="/A347765/b347765.txt">Table of n, a(n) for n = 1..10000</a>
%t Table[FromDigits@ Map[If[OddQ[#], Boole[Mod[n, #] == 0], Boole[Mod[n - #/2, #] == 0]] &, Range@ Floor[(Sqrt[8 n + 1] - 1)/2]], {n, 39}] (* _Michael De Vlieger_, Sep 15 2021 *)
%o (PARI) t(n, k) = if (k % 2, (n % k) == 0, ((n - k/2) % k) == 0);
%o a(n) = fromdigits(vector(floor((sqrt(1+8*n)-1)/2), k, t(n, k)), 10); \\ _Michel Marcus_, Sep 12 2021
%Y Cf. A003056, A007088, A001227, A196020, A237048, A237593, A238005, A347266 (decimal value).
%K nonn,base
%O 1,3
%A _Omar E. Pol_, Sep 12 2021