Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Oct 24 2024 15:09:33
%S 3,4,6,7,10,11,13,14,16,17,18,20,21,23,24,26,27,30,31,33,34,37,38,40,
%T 41,42,43,44,45,47,48,50,51,54,55,57,58,60,61,62,63,64,65,67,68,70,71,
%U 74,75,77,78,79,81,82,84,85,86,87,88,89,91,92,94,95,97,98,99
%N Orders of additive cubes in the tribonacci word A080843.
%C An additive cube is three consecutive blocks of the same length and same sum.
%C There is a tribonacci automaton of 4927 states recognizing the set of these orders (in tribonacci representation).
%H Pierre Popoli, Jeffrey Shallit, and Manon Stipulanti, <a href="https://arxiv.org/abs/2410.02409">Additive word complexity and Walnut</a>, arXiv:2410.02409 [math.CO], 2024. See p. 17.
%e The first few examples of additive cubes of different lengths in the tribonacci word are 020.101.020 (order 3), 2010.0102.0102 (order 4), and 102010.010201.010201 (order 6)
%Y Cf. A080843, A345717.
%K nonn
%O 1,1
%A _Jeffrey Shallit_, Sep 18 2021