login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of minimal dominating sets in the n-dipyramidal graph (for n > 3).
0

%I #6 Dec 08 2021 11:20:51

%S 3,7,10,15,16,18,29,31,40,48,67,82,105,143,189,255,341,474,647,892,

%T 1236,1719,2393,3330,4656,6503,9094,12719,17807,24931,34907,48895,

%U 68490,95951,134420,188338,263885,369743,518080,725940,1017211,1425346,1997265,2798671

%N Number of minimal dominating sets in the n-dipyramidal graph (for n > 3).

%C The 3-dipyramidal graph deviates from this sequence because it has 4 minimal dominating sets while a(3) = 10.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DipyramidalGraph.html">Dipyramidal Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MinimalDominatingSet.html">Minimal Dominating Set</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,-1,0,-1,0,2,-1).

%F a(n) = A253413(n)+2*n+1.

%F a(n) = 2*a(n-1)-a(n-3)-a(n-5)+2*a(n-7)-a(n-8).

%F G.f.: x*(3+x-4*x^2-2*x^3-7*x^4-x^5+15*x^6-7*x^7))/((-1+x)^2*(1-x^2-x^3-x^4+x^6)).

%t Table[2 n + 1 + RootSum[1 - #^2 - #^3 - #^4 + #^6 &, #^n &], {n, 20}]

%t LinearRecurrence[{2, 0, -1, 0, -1, 0, 2, -1}, {3, 7, 10, 15, 16, 18, 29, 31}, 20]

%t CoefficientList[Series[(3 + x - 4 x^2 - 2 x^3 - 7 x^4 - x^5 + 15 x^6 - 7 x^7)/((-1 + x)^2 (1 - x^2 - x^3 - x^4 + x^6)), {x, 0, 20}], x]

%Y Cf. A253413.

%K nonn

%O 1,1

%A _Eric W. Weisstein_, Sep 09 2021