login
A347630
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is the number of partitions of n^k into distinct odd parts.
3
1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 5, 14, 5, 1, 1, 1, 1, 23, 833, 276, 12, 1, 1, 1, 1, 276, 1731778, 2824974, 9912, 33, 1, 1, 1, 1, 11564, 1741020966255, 824068326214949, 150145281903, 602245, 93, 2, 1, 1, 1, 2824974, 78444810948209793568790, 195321031346209256918890884699755, 7375247711025022789604527681, 116880108216597935, 57638873, 276, 2, 1
OFFSET
0,18
FORMULA
T(n,k) = A000700(n^k).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 0, 1, 2, 5, 23, ...
1, 1, 2, 14, 833, 1731778, ...
1, 1, 5, 276, 2824974, 824068326214949, ...
1, 1, 12, 9912, 150145281903, 7375247711025022789604527681, ...
PROG
(PARI) T(n, k) = polcoef(prod(j=0, n^k\2, 1+x^(2*j+1)+x*O(x^(n^k))), n^k);
CROSSREFS
Columns k=0..2 give A000012, A000700, A281489.
Main diagonal gives A347626.
Cf. A347621.
Sequence in context: A078077 A078082 A307090 * A079674 A113193 A239110
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Sep 09 2021
STATUS
approved