login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347558
Number of minimum dominating sets in the n-ladder graph.
6
2, 6, 3, 12, 2, 17, 2, 20, 2, 24, 2, 28, 2, 32, 2, 36, 2, 40, 2, 44, 2, 48, 2, 52, 2, 56, 2, 60, 2, 64, 2, 68, 2, 72, 2, 76, 2, 80, 2, 84, 2, 88, 2, 92, 2, 96, 2, 100, 2, 104, 2, 108, 2, 112, 2, 116, 2, 120, 2, 124, 2, 128, 2, 132, 2, 136, 2, 140, 2, 144, 2
OFFSET
1,1
LINKS
Eric Weisstein's World of Mathematics, Ladder Graph
Eric Weisstein's World of Mathematics, Minimum Dominating Set
FORMULA
a(n) = 2*(n+2) for mod(n, 2)=0 and n != 2,6.
a(n) = 2 for mod(n, 2)=1 and n != 3.
a(n) = 2*a(n-2)-a(n-4) for n > 6.
G.f.: x*(2 + 6*x - x^2 - 2*x^4 - x^5 + x^6 - 2*x^7 + x^9)/((-1 + x)^2*(1 + x)^2).
MATHEMATICA
Join[{2, 6, 3, 12, 2, 17}, LinearRecurrence[{0, 2, 0, -1}, {2, 20, 2, 24}, 20]]
CoefficientList[Series[(2 + 6 x - x^2 - 2 x^4 - x^5 + x^6 - 2 x^7 + x^9)/((-1 + x)^2 (1 + x)^2), {x, 0, 20}], x]
PROG
(PARI) a(n)={if(n%2, 1, n+2)*2 + if(n<=6, [0, -2, 1, 0, 0, 1][n])} \\ Andrew Howroyd, Jan 18 2022
CROSSREFS
Row 2 of A350820.
Cf. A347634.
Sequence in context: A079178 A322365 A297553 * A317490 A256466 A303771
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Sep 06 2021
STATUS
approved