%I #14 Sep 14 2021 03:50:28
%S 1,1,2,3,5,7,10,13,18,23,30,38,48,59,73,89,108,130,156,185,220,259,
%T 304,356,415,482,559,645,743,854,979,1119,1278,1455,1654,1878,2127,
%U 2405,2717,3063,3449,3879,4356,4885,5474,6125,6846,7645,8527,9501,10579
%N Number of partitions of n into 4 or more distinct parts.
%F G.f.: Sum_{k>=4} x^(k*(k + 1)/2) / Product_{j=1..k} (1 - x^j).
%F a(n) = A000009(n) - A014591(n). - _Vaclav Kotesovec_, Sep 14 2021
%t nmax = 60; CoefficientList[Series[Sum[x^(k (k + 1)/2)/Product[(1 - x^j), {j, 1, k}], {k, 4, nmax}], {x, 0, nmax}], x] // Drop[#, 10] &
%Y Cf. A000009, A014591, A111133, A347548.
%K nonn
%O 10,3
%A _Ilya Gutkovskiy_, Sep 06 2021