%I #13 Sep 14 2021 03:42:50
%S 1,1,2,3,5,6,9,11,15,19,24,29,37,44,54,65,78,92,110,129,152,178,208,
%T 241,281,324,374,431,495,567,650,741,845,962,1093,1239,1405,1588,1794,
%U 2025,2281,2566,2886,3239,3633,4071,4556,5093,5691,6350,7080,7888,8779,9762,10850
%N Number of partitions of n into 3 or more distinct parts.
%F G.f.: Sum_{k>=3} x^(k*(k + 1)/2) / Product_{j=1..k} (1 - x^j).
%F a(n) = A000009(n) - floor((n + 1)/2). - _Vaclav Kotesovec_, Sep 14 2021
%t nmax = 60; CoefficientList[Series[Sum[x^(k (k + 1)/2)/Product[(1 - x^j), {j, 1, k}], {k, 3, nmax}], {x, 0, nmax}], x] // Drop[#, 6] &
%Y Cf. A000009, A004526, A111133, A347549.
%K nonn
%O 6,3
%A _Ilya Gutkovskiy_, Sep 06 2021