login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of divisors of n that are at most n^(1/4).
2

%I #15 Sep 06 2021 03:03:23

%S 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,

%T 1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,

%U 1,2,1,2,1,2,1,2,1,2,1,2,2,2,1,3,1,2,2,2,1,3,1,2,2,2,1,3,1,2,2,2,1,3,1,2,2,2,1,3

%N Number of divisors of n that are at most n^(1/4).

%H Seiichi Manyama, <a href="/A347526/b347526.txt">Table of n, a(n) for n = 1..10000</a>

%F G.f.: Sum_{k>=1} x^(k^4)/(1 - x^k).

%t a[n_] := DivisorSum[n, 1 &, # <= n^(1/4) &]; Array[a, 100] (* _Amiram Eldar_, Sep 05 2021 *)

%o (PARI) a(n) = sumdiv(n, d, d^4<=n);

%o (PARI) N=99; x='x+O('x^N); Vec(sum(k=1, N^(1/4), x^k^4/(1-x^k)))

%Y Cf. A000005, A038548, A063775, A347516, A347527.

%K nonn

%O 1,16

%A _Seiichi Manyama_, Sep 05 2021