login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of dominating sets in the n-dipyramidal graph.
0

%I #4 Sep 04 2021 20:09:44

%S 5,13,29,57,115,229,453,897,1775,3513,6957,13785,27331,54221,107629,

%T 213761,424767,844465,1679605,3342057,6652563,13247093,26387445,

%U 52578561,104796015,208927849,416634077,831021241,1657909763,3308218269,6602455645,13179196417

%N Number of dominating sets in the n-dipyramidal graph.

%C Sequence extended to a(1) using the formula/recurrence.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DipyramidalGraph.html">Dipyramidal Graph</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DominatingSet.html">Dominating Set</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4,0,-1,2).

%F a(n)=4*a(n-1)-4*a(n-2)-a(n-4)+2*a(n-5).

%F G.f.: -x*(5-7*x-3*x^2-7*x^3+8*x^4)/((-1+x)*(-1+2*x)*(-1+x+x^2+x^3)).

%t Table[RootSum[-1 - # - #^2 + #^3 &, #^n &] + 3 2^n - 2, {n, 20}]

%t CoefficientList[Series[-(5 - 7 x - 3 x^2 - 7 x^3 + 8 x^4)/((-1 + x) (-1 + 2 x) (-1 + x + x^2 + x^3)), {x, 0, 20}], x]

%K nonn

%O 1,1

%A _Eric W. Weisstein_, Sep 04 2021