Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Oct 22 2023 16:43:04
%S 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,4,1,2,1,2,1,1,1,2,2,1,2,2,1,1,1,4,1,1,
%T 1,6,1,1,1,2,1,1,1,2,2,1,1,5,2,2,1,2,1,3,1,2,1,1,1,2,1,1,2,8,1,1,1,2,
%U 1,1,1,6,1,1,2,2,1,1,1,5,4,1,1,2,1,1,1,2,1,3,1,2,1,1,1,6,1,2,2,6,1,1,1,2,1,1,1,7
%N Number of factorizations of n with integer alternating product.
%C A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
%C We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
%H Antti Karttunen, <a href="/A347437/b347437.txt">Table of n, a(n) for n = 1..65537</a>
%H PlanetMath, <a href="https://planetmath.org/alternatingsum">alternating sum</a>
%F a(2^n) = A344607(n).
%F a(n^2) = A347458(n).
%e The factorizations for n = 4, 16, 36, 48, 54, 64, 108:
%e (4) (16) (36) (48) (54) (64) (108)
%e (2*2) (4*4) (6*6) (2*4*6) (2*3*9) (8*8) (2*6*9)
%e (2*2*4) (2*2*9) (3*4*4) (3*3*6) (2*4*8) (3*6*6)
%e (2*2*2*2) (2*3*6) (2*2*12) (4*4*4) (2*2*27)
%e (3*3*4) (2*2*2*2*3) (2*2*16) (2*3*18)
%e (2*2*3*3) (2*2*4*4) (3*3*12)
%e (2*2*2*2*4) (2*2*3*3*3)
%e (2*2*2*2*2*2)
%t facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
%t altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
%t Table[Length[Select[facs[n],IntegerQ@*altprod]],{n,100}]
%o (PARI) A347437(n, m=n, ap=1, e=0) = if(1==n, if(e%2, 1==denominator(ap), 1==numerator(ap)), sumdiv(n, d, if((d>1)&&(d<=m), A347437(n/d, d, ap * d^((-1)^e), 1-e)))); \\ _Antti Karttunen_, Oct 22 2023
%Y Positions of 1's are A005117, complement A013929.
%Y Allowing any alternating product <= 1 gives A339846.
%Y Allowing any alternating product > 1 gives A339890.
%Y The restriction to powers of 2 is A344607.
%Y The even-length case is A347438, also the case of alternating product 1.
%Y The reciprocal version is A347439.
%Y Allowing any alternating product < 1 gives A347440.
%Y The odd-length case is A347441.
%Y The reverse version is A347442.
%Y The additive version is A347446, ranked by A347457.
%Y Allowing any alternating product >= 1 gives A347456.
%Y The restriction to perfect squares is A347458, reciprocal A347459.
%Y The ordered version is A347463.
%Y A001055 counts factorizations.
%Y A046099 counts factorizations with no alternating permutations.
%Y A071321 gives the alternating sum of prime factors of n (reverse: A071322).
%Y A273013 counts ordered factorizations of n^2 with alternating product 1.
%Y A347460 counts possible alternating products of factorizations.
%Y Cf. A025047, A038548, A062312, A088218, A119620, A316523, A330972, A332269, A347445, A347447, A347451, A347454.
%K nonn
%O 1,4
%A _Gus Wiseman_, Sep 06 2021
%E Data section extended up to a(108) by _Antti Karttunen_, Oct 22 2023