login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347364
Primes of the form p^4 + p^2 - 1 where p is prime.
1
19, 89, 28729, 130681, 1875529, 3420649, 7893289, 112561489, 373320361, 777824209, 1506177289, 3262865761, 4362536449, 5887416169, 8882968249, 9355048561, 18141261409, 21517809409, 22898196361, 27983100241, 35152312609, 62001747001, 67123223641, 85662460441, 89526324889, 100469663929
OFFSET
1,1
COMMENTS
a(n) == 1 (mod 72) for n >= 3. - Hugo Pfoertner, Aug 29 2021
LINKS
EXAMPLE
a(3) = 28729 is a term because 28729 = 13^4 + 13^2 - 1, and 13 and 28729 are primes.
MAPLE
map(t -> t^4+t^2-1, select(t -> isprime(t) and isprime(t^4+t^2-1), [2, seq(i, i=3..10000, 2)]));
MATHEMATICA
f[p_] := p^4 + p^2 - 1; Select[Map[f, Select[Range[600], PrimeQ]], PrimeQ] (* Amiram Eldar, Aug 29 2021 *)
Select[Table[p^4+p^2-1, {p, Prime[Range[200]]}], PrimeQ] (* Harvey P. Dale, Aug 11 2024 *)
PROG
(Python)
from sympy import isprime, primerange
def auptop(maxp): return list(filter(isprime, (p**4 + p**2 -1 for p in primerange(1, maxp+1))))
print(auptop(580)) # Michael S. Branicky, Aug 29 2021
CROSSREFS
Sequence in context: A126406 A201306 A160296 * A224097 A088574 A096031
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Aug 29 2021
STATUS
approved