|
|
A347344
|
|
Positive integers k such that k with the first (most significant) digit repeated is prime.
|
|
1
|
|
|
1, 13, 23, 27, 29, 31, 37, 43, 49, 57, 61, 73, 81, 83, 87, 91, 97, 103, 109, 117, 123, 129, 151, 153, 163, 171, 181, 187, 193, 203, 207, 213, 221, 237, 239, 243, 251, 267, 269, 273, 281, 287, 293, 297, 301, 307, 313, 319, 323, 329, 331, 343, 347, 359, 361
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Conjecture: the sequence contains infinitely many twin prime pairs (k, k+2) such that (D(k), D(k+2)) is a twin prime pair, where D(x) = x with the most significant digit repeated. The first such k is 659: both (659, 661) and (6659, 6661) are twin prime pairs. All these k begin with either 3, 6, or 9.
|
|
LINKS
|
Michael S. Branicky, Table of n, a(n) for n = 1..10000
|
|
EXAMPLE
|
27 is a term because 227 is prime.
|
|
MATHEMATICA
|
upto=500; Select[Range[1, upto, 2], PrimeQ[FromDigits[Join[{First[d=IntegerDigits[#]]}, d]]]&]
|
|
PROG
|
(Python)
from sympy import isprime
def ok(n): s = str(n); return isprime(int(s[0] + s))
print(list(filter(ok, range(362)))) # Michael S. Branicky, Aug 27 2021
(PARI) isok(k) = my(d=digits(k)); isprime(eval(fromdigits(concat(d[1], d)))); \\ Michel Marcus, Sep 09 2021
|
|
CROSSREFS
|
Cf. A000040, A226099, A347343.
Sequence in context: A298235 A111676 A058030 * A102498 A019399 A255581
Adjacent sequences: A347341 A347342 A347343 * A347345 A347346 A347347
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
Paolo Xausa, Aug 27 2021
|
|
STATUS
|
approved
|
|
|
|