OFFSET
0,2
COMMENTS
Ratio of successive terms, a(n+1)/a(n), seems to be converging to ~2.9506. - Michael S. Branicky, Sep 19 2021
EXAMPLE
Row 2 is 4, 3, 2, 2, 1, 0, which has sum 12.
MATHEMATICA
Total /@ TakeList[Import["https://oeis.org/A347738/b347738.txt", "Data"][[All, -1]], {1}~Join~Array[3*2^# &, 13, 0]] (* Michael De Vlieger, Sep 13 2021, generated using the b-file at A347738 *)
PROG
(Python)
def afind():
num, gte_inventory, rowsum, bigc = 0, [1], 0, 0
print(0, end=", ")
while True:
c = gte_inventory[num] if num <= bigc else 0
num += 1
rowsum += c
if c == 0:
print(rowsum, end=", ")
num = rowsum = 0
for i in range(min(c, bigc)+1):
gte_inventory[i] += 1
for i in range(bigc+1, c+1):
gte_inventory.append(1)
bigc = len(gte_inventory) - 1
afind() # Michael S. Branicky, Sep 19 2021
CROSSREFS
KEYWORD
nonn,hard
AUTHOR
N. J. A. Sloane, Sep 13 2021
EXTENSIONS
a(14)-a(16) from Michael De Vlieger, Sep 13 2021
a(17)-a(27) from Michael S. Branicky, Sep 18 2021
STATUS
approved