login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n, k) = Sum_{i=1..n} gcd(1 + (i-1) * (k-1),n) for 1 <= k <= n.
0

%I #23 Jan 26 2022 08:58:45

%S 1,2,3,3,5,5,4,8,4,8,5,9,9,9,9,6,15,10,9,10,15,7,13,13,13,13,13,13,8,

%T 20,8,20,8,20,8,20,9,21,21,9,21,21,9,21,21,10,27,18,27,18,15,18,27,18,

%U 27,11,21,21,21,21,21,21,21,21,21,21,12,40,20,24,20,40,12,40,20,24,20,40

%N Triangle read by rows: T(n, k) = Sum_{i=1..n} gcd(1 + (i-1) * (k-1),n) for 1 <= k <= n.

%C Triangle without column 1 is symmetrical.

%C Conjecture: Let f be an arbitrary arithmetic function. Define for n > 0 the sequence a(f; n) = Sum_{i=1..n, k=1..n} f(gcd(1 + (i-1) * (k-1),n)); then a(f; n) = dc(A000290(n), A000010(n) * dc(A008683(n), f(n)) where dc(x, y) is Dirichlet convolution of x and y; if f is multiplicative, then a(f; n) is multiplicative; row sums of this triangle use f(n) = n (see formula section).

%F T(n, 1) = n; T(n, n) = A018804(n).

%F T(n, k) = T(n, n+2-k) for 1 < k <= n.

%F Conjecture: Row sums equal Dirichlet convolution of A000290 and A127473.

%e The triangle T(n, k) for 1 <= k <= n starts:

%e n \k : 1 2 3 4 5 6 7 8 9 10 11 12

%e ======================================================

%e 1 : 1

%e 2 : 2 3

%e 3 : 3 5 5

%e 4 : 4 8 4 8

%e 5 : 5 9 9 9 9

%e 6 : 6 15 10 9 10 15

%e 7 : 7 13 13 13 13 13 13

%e 8 : 8 20 8 20 8 20 8 20

%e 9 : 9 21 21 9 21 21 9 21 21

%e 10 : 10 27 18 27 18 15 18 27 18 27

%e 11 : 11 21 21 21 21 21 21 21 21 21 21

%e 12 : 12 40 20 24 20 40 12 40 20 24 20 40

%e etc.

%Y Cf. A000010, A000290, A008683, A018804, A127473.

%K nonn,easy,tabl

%O 1,2

%A _Werner Schulte_, Jan 23 2022