login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Product_{j=1..A089576(n)} p_j^e_j with e_j = floor(e_(j-1)*log(p_(j-1))/log(p_j)) where the first factor is 2^n.
9

%I #18 May 19 2023 17:26:51

%S 1,2,12,24,720,151200,302400,1814400,4191264000,8382528000,

%T 251727315840000,503454631680000,3020727790080000,

%U 1542111744113740800000,3084223488227481600000,92526704646824448000000,555160227880946688000000,1110320455761893376000000,10769764221549079560253440000000

%N a(n) = Product_{j=1..A089576(n)} p_j^e_j with e_j = floor(e_(j-1)*log(p_(j-1))/log(p_j)) where the first factor is 2^n.

%C a(n) is the product of the largest prime power divisors p_j^e_j such that p_j^e_j < p_(j-1)^e_(j-1), beginning with p_1^e_1 = 2^n and proceeding with the next prime p until e_j = 0.

%C {a(n)} is a subset of A025487 which is a subset of A055932. All terms are products of primorials. No primes p_j for 1 <= j <= L have e = 0 with the exception of a(0) = 2^0. Let L = A001221(a(n)).

%C The largest primorial divisor P(L) = A2110(L).

%C For n > 0, all terms are even.

%C The greatest prime divisor p_L has multiplicity e_L = 1.

%C All multiplicities e are distinct; for 1 <= j <= L, the multiplicity e_j >= L - j + 1.

%C a(k) | a(n) for 0 <= k <= n.

%C The numbers q = a(n+1)/a(n) are primorials.

%C Finite intersection of A002182 and a(n) = {1, 2, 12, 360, 75600}.

%C Chernoff number A006939(L) | a(n). Quotient K = a(n) | A006939(L) is in A025487.

%C The prime shape of terms resembles a simplified map of the US state of Idaho.

%H Michael De Vlieger, <a href="/A347284/b347284.txt">Table of n, a(n) for n = 0..144</a>

%H Michael De Vlieger, <a href="/A347284/a347284.png">Bitmap resulting from binary compactification of a(n)</a>, 0 <= n <= 4096.

%H Michael De Vlieger, <a href="/A347284/a347284.gif">Animation of prime shapes of a(n)</a> for 2 <= n <= 37, illustrating a(n) as a product of a particular sequence of primorials.

%F a(n) = Product_{j=1..k} p_j^T(n,j) where T = A347285 and k = A089576(n).

%F Row n of A347285 yields row a(n) of A067255.

%F a(n) = product of row n of A347288.

%e a(0) = 2^0 = 1;

%e a(1) = 2^1 = 2, since 3^1 > 2^1;

%e a(2) = 2^2 * 3^1, since 3^1 < 2^2 but 3^2 > 2^2, and since 5^1 > 3^1;

%e a(3) = 2^3 * 3^1, since 3^1 < 2^3 but 3^2 > 2^3, and 5^1 > 3^1;

%e a(4) = 2^4 * 3^2 * 5^1, since 3^2 < 2^4 yet 3^3 > 2^4, 5^1 < 3^2 yet 5^2 > 3^2, and 7^1 > 5^1; etc.

%e Prime shapes of a(n) for 2 <= n <= 5:

%e 5 o

%e 4 o 4 x

%e 3 o 3 x 3 x x

%e 2 x 2 x 2 x x 2 x x x

%e a(2) 1 X X a(3) 1 X X a(4) 1 X X X a(5) 1 X X X X

%e 2 3 2 3 2 3 5 2 3 5 7

%e This demonstrates that a(n) is in A025487, that A002110(A001221(a(n))) is the greatest primorial divisor of a(n) as a consequence (prime divisors represented by capital X's), and Chernoff A006939(A001221(a(n))) | n, prime divisors represented by x's of any case. a(n) = A006939(A001221(a(n))) * k, k in A025487, represented by o's.

%e Because each multiplicity e is necessarily distinct, we may compactify a(n) using Sum_{k=1..omega(a(n))} 2^(e-1).

%e Prime shapes of a(12):

%e 12 o

%e 11 o

%e 10 o

%e 9 o

%e 8 o

%e 7 o o

%e 6 x o

%e 5 x x

%e 4 x x x

%e 3 x x x x

%e 2 x x x x x

%e a(12) 1 X X X X X X

%e 2 3 5 7 ...

%e a(12) = A006939(6) * 2^6 * 3^2

%e = 5244319080000 * 64 * 9

%e = 3020727790080000.

%e O

%e O x

%e O x x

%e O x x o x x

%e O x x o x x o x x x

%e O x o x x x x o x x x o x x x x

%e a(1)*6 = a(2)*2 = a(3)*30 = a(4)*210 = a(5)*2 = a(6), etc., hence a(n) can be generated by a list of indices of primorials {1, 2, 1, 3, 4, 1, 1, 5, ...} and thereby be efficiently compactified.

%t Array[Times @@ NestWhile[Append[#1, #2^Floor@ Log[#2, #1[[-1]]]] & @@ {#, Prime[Length@ # + 1]} &, {2^#}, Last[#] > 1 &] &, 18, 0] (* or *)

%t Block[{nn = 2^5, a = {}, b, e, i, m, p}, Array[Set[e[#], 0] &, Floor[2^# If[# <= 4, 1/2, -1 + 2^(7/(3 #))]] &[Ceiling@ Log2@ nn]]; Do[e[1]++; b = {2^e[1]}; Do[If[Last[b] == 1, Break[], i = e[j]; p = Prime[j]; While[p^i < b[[j - 1]], i++]; AppendTo[b, p^(i - 1)]; If[i > e[j], e[j]++]], {j, 2, k}]; AppendTo[a, Times @@ b], {k, nn}]; Prepend[a, 1]]

%t (* Generate up to 4096 terms from the bitmap image *)

%t With[{r = ImageData@ Import["https://oeis.org/A347284/a347284.png"]}, {1}~Join~Table[Times @@ Flatten@ MapIndexed[Prime[#2]^#1 &, Reverse@ Position[r[[i]], 0.][[All, 1]]], {i, 20}]]

%t (* Generate up to 10000 terms using b-file at A347354 (numbers are large as n increases, limit nn is set to 120): *)

%t Block[{nn = 120, s, m}, s = Import["https://oeis.org/A347354/b347354.txt", "Data"][[1 ;; nn, -1]]; m = Prime@ Range@ Max[s]; {1}~Join~FoldList[Times, Map[Times @@ m[[1 ;; #]] &, s]]] (* _Michael De Vlieger_, Sep 25 2021 *)

%Y Cf. A000079, A001221, A002110, A002182, A006939, A067255, A089576, A347285, A347288, A347354.

%Y Subsequence of A025487, A055932, A363063.

%K nonn

%O 0,2

%A _Michael De Vlieger_ and _David James Sycamore_, Aug 26 2021

%E Definition edited by _Peter Munn_, May 19 2023